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Influence of defects in a coupled map lattice modeling earthquakes
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We study the robustness of self-organized criticality in the coupled map lattice introduced by
Olami, Feder, and Christensen [Phys. Rev. Lett. 88, 1224 (1992)] by considering the influence of
point and extended defects. Our results indicate that there is a finite range of defect concentrations
for which one can observe criticality. Additionally, the study of the Gutenberg-Richter law allowed
us to verify that the defect-free model has a smoother behavior than previously predicted.

PACS number(s): 05.20.—y, 05.45.+b, 05.70.Jk, 64.60.—i

I. INTRODUCTION

Self-organized criticality (SOC) was introduced as a
subject of study by Bak, Tang, and Wiesenfeld [1]. It is a
concept designed to describe extended dynamical systems
reaching a stationary state characterized by power-law
distribution functions in both space and time, without
any “fine tuning” of an external parameter. Since the
publication of their work there were many attempts to
understand under what conditions a given system will
display this behavior (see, for instance, Refs. [2, 3]).

Recently, Olami, Feder, and Christensen [4] (OFC)
introduced a continuous, deterministic, nonconservative
coupled map lattice model which was shown to display
SOC. This model, which has had some points of contact
with the work of Feder and Feder [3], can be shown to
be a two-dimensional implementation of the Burridge-
Knopoff spring-block model of earthquakes [5]. The
model is very simple, and its properties can be controlled
by means of a physically sensible parameter o measuring
the degree of conservation. In fact, it was even suggested
[6] that these models should be considered as generic
“Ising models” of dissipative many-body systems (for a
very different point of view, however, see the work of
Socolar, Grinstein, and Jayaprakash [7]).

It is therefore interesting to study the different proper-
ties of this coupled map lattice. In this work we address
the question of the stability of its self-organized critical
solution. Also, an improved result [8] for the dependence
of the Gutenberg-Richter exponent (see below) with « is
given.

We chose to perturb the system by randomly introduc-
ing controlled, local variations of the coupling between
nearest neighbors. We believe that this is a sensible form
to introduce perturbation in a model related to earth-
quakes, because by breaking translation invariance we
make room for inhomogeneities of the medium. More
specifically, we have considered perturbed regions where
earthquake strength is effectively diminished by using a
smaller value of a: this seems to be the most efficient
form to destroy SOC [9].
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II. THE MODEL

The two-dimensional spring-block model of earth-
quakes comnsists of a set of blocks on a two-dimensional
square lattice; nearest neighbor blocks are connected by
springs. There is static friction between each block and
the plate on which they stay, so that the force required to
move a block should at least be equal to a threshold value
Fip,. As is well known, the existence of this threshold in-
troduces nonlinearity in the problem. The last element
defining the geometry of the model is a second plate,
located above the blocks and connected to them by an-
other set of springs. This gives rise to a nonconservative
mechanism (a mechanism not conserving the force in the
plane).

Moving one plate relative to the other uniformly in-
creases the force on each block until one of them reaches
Fyp: this starts an earthquake. A block at site (z,7) and
subjected to a force F;; > F;, will move and relax by
acting on its neighbors, specifically [4]

Fiz1; 2 Fix1;+0Fit1; ,

F;jx1— Fju1 + 0F; ju1 (2.1)
Fi,j - 07
where
0F;+1; =aF;;,
(2.2)

(sFi’j:tl = aFi,j.

By writing the equations in this form [i.e., the same value
of o in both lines of Eq. (2.2)] we are limiting ourselves
to the isotropic case.

If @ = 0.25 the system is conservative, in the sense
that Z(NN) 6F<NN> = Fi,j. Otherwise, for a < 0.25, it
is nonconservative. The main properties of the model
depend on the degree of conservation, i.e., on the value
of a.

We have studied the case of open boundary conditions;
this means that the outer blocks of the model are cou-
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pled to fictitious blocks with springs characterized by the
same value of a. The coupled map lattice of OFC mimics
this model through the following rules: a real variable
u; ; (the “stress”) is defined on each site of an L x L
square lattice, with random initial values. The system is
globally driven: all u;; are increased simultaneously at a
uniform rate, until eventually one site reaches a threshold
value u¢p (uep = 4 in this work), triggering an avalanche.
During the avalanche, the stress values of the lattice are
updated as follows: for any site with u; ; > up, u;; — 0
(it topples); any site having a toppling site as a nearest
neighbor is kicked: u;; — u;; +« Z(nn) U(nny- The sum
runs over all the toppling nearest neighbors of site (z, ).

III. RESULTS AND DISCUSSION

In this paper we report determinations of the (normal-
ized) distribution of earthquake sizes D(S) [10]. Real
earthquakes follow the Gutenberg-Richter law [11]: the
number of observed earthquakes with energy e greater
than E is given by N(e >E) ~E~B, with B = 0.80 —
1.54. It can be shown [8] that one can write D(S) ~
§—(1+B) with the value of B controlled by . The depen-
dence of the exponent B on « found by Christensen and
Olami displays an apparent change of behavior around
a ~ 0.10 — 0.15 (we reproduce data points from Fig. 3
of Ref. [8] in our Fig. 1). We have made a more detailed
determination of B(a) for the same 35 x 35 lattice. It
can be seen in Fig. 1 that our results are coincident with
those of Ref. [8] for a > 0.15, but depart from them for
a < 0.10.

All results quoted in this work were obtained by con-
sidering 500 independent samples. The initial configu-
ration of each sample was chosen by randomly assigning
a value to the stress at each site, such that u;; < wus.
For every sample we discarded the first N, earthquakes
and collected data for the following N,. For a > 0.13 we
used N, = 5 x 10% and N, = 10%, but for a < 0.12 we
were forced to use N, = 5 x 10% to have stable solutions
(i-e., we discarded 250 000 000 avalanches for these values
of @). As a further check that the system is already in
the stationary regime, we made extensive determinations
for a < 0.1 in a single sample, with N, = 1 to 3 x 108,

3.0 - . : -
4 A
25} o . ]
o
2.0 ° a ]
O o °
o
m 15F ° 50 B
@ O
OA
1.0 | °, R B
%o
s
0.5F %
u
-Qa
0.0 . ; . . e
0.00 0.05 0.10 0.15 0.20 0.25
(o4
FIG.1. The Gutenberg-Richter coefficient B as a function

of a. The filled triangles represent data from the work of
Christensen and Olami (Ref. [8]).
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FIG. 2. Distribution function D(S) as a function of S of

lattices without defects and L = 25,35, and 45. For S < 100
we only plot data for L = 45 (small filled triangles) because
the three cases are almost indistinguishable. For S > 100 we
have included a few representative, equally spaced points for
L = 25 (empty circles) and L = 35 (pluses).

and N, = 10°%, obtaining results in agreement with Fig.
1. The difference between these results and the work of
Christensen and Olami is most probably due to this fac-
tor. Hence, our result shows that B is a rather smooth
function of a, with no significant change of behavior.
The main results of this work are related to the in-
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FIG. 3. Distribution function D(S) of a 45x45 lattice

with defects. From top to bottom, the curves correspond
to 0%, 1%, 2%, 3%, 5%, and 10% of defects (all but the first
curves are offset vertically 0.5 units from the previous one to
improve readability).
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FIG. 4. Distribution func-
tion D(S) for the 35x35 lattice.
The curves are folded: filled cir-
cles and empty triangles corre-

log,, D(S)

spond to 0% and 3% of point
defects, respectively (left and
bottom axes), while empty cir-
cles and filled triangles repre-
sent the same curves but with
the upper and right axes. In
the inset we show how the 3%
curve interpolates between the
defect-free cases with a = 0.1
and =02 .

fluence of lattice defects. Translation invariance requires
that a be the same at every lattice site. The system was
perturbed by the introduction of defects: we say that a
site has a (point) defect if the interactions with its nearest
neighbors are changed: a — ag4.

We have considered the influence of two different types
of perturbations: point and extended defects (an ex-
tended defect is a set of contiguous point defects). Point
defects were randomly assigned to different sites in the
lattice.

In the other case, both horizontal and vertical straight
extended defects were randomly located on the lattice
with the only (arbitrary) limitation that their length be
not greater than 1/10 of the lattice side. In this form we
excluded cases with just one big linear defect that could
eventually split the lattice in two regions.

In both cases we controlled the total number of sites
with a defect, N4. For every lattice size we used a number
of sites with defects such that they represented 1%, 2%,
3%, 5%, 7%, and 10% of the total.

We have performed numerical simulations on square
lattices of different sizes. Finite-size effects were taken
into account by studying lattices with L = 25,35, and
45. As mentioned before, all results quoted here were
obtained by considering 500 independent samples, with
a =0.2 and ag = 0.1.

In general, we used N, = 5 x 10* and N, = 10%. In
several cases we also used N, = 1.1 x 10% to check the
stability of our results. In a few cases we made runs with
N, = 10%, N, = 5 x 104,

Our results for samples without any defect reproduce
those of [8], as expected. Values for all three lattices
coincide for S < 100, and show the same typical noisy
behavior at the highest S values. Figure 2 displays our
data for L = 45 and a few representative points with
S > 100 for L = 25 and 35, to exhibit the L dependence
as clearly as possible. It can be seen that there is no sig-
nificant size effect, except for the obvious size dependence

at the highest values of S.

The presence of defects changes this behavior. If the
amount of defects § exceeds ~ 5% of the sites it is no
longer possible to identify a power law in D(S): the sys-
tem ceases to display SOC. For smaller values of § the
model apparently still has SOC, although the correspond-
ing range of S values shrinks as § grows, as shown in Fig.
3, were we have displaced the curves for clarity.

A closer look, however, reveals a more complex situa-
tion in the SOC region. Figure 4 shows our results for a
typical case (note that the curves are folded). The sam-
ple with defects roughly interpolates between the defect-
free samples with parameters o and aq4 (see the inset of
Fig. 4) For large values of S (S ~ 100 or more) there
are fewer earthquakes in the sample with defects, as ex-
pected, because N ~S~2 and B(0.1) > B(0.2). On the
other hand, for small values of S one could expect that
this part of the curve with defects should be steeper than
the curve without defects, while the opposite is obtained.

0.4} 1
0.2 ° extended defects
A point defects
0.0 s . . ‘ n
0 1 2 3 4 5
5 (7)
FIG. 5. Variation of the Gutenberg-Richter coefficient B,

with the defect content (L = 45). Data for higher values of §
do not display SOC. In the text we explain why we call this
an apparent B.
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] FIG. 6. Distribution func-
] tion D(S) for a fixed value of
d and several lattice sizes. The
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25 inset shows the noisy part in

more detail. Point defects are
] drawn with filled symbols (cir-
] cles, squares, and triangles cor-
responding to L = 25,35, and
45, respectively); empty sym-
] bols correspond to extended de-
b fects.
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In other words, it seems that it is not possible to study
the influence of even a small amount of defects by iso-
lating different regions of D(S). This is probably due to
the nonlocal character of the actualization rules of the
cellular automaton (and to the proximity to a non-SOC
state). In Fig. 5 we represent this by showing the change
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of B as a function of §; we have called this B,(é) in or-
der to emphasize that this can be an “apparent” B value.
From both Figs. 3 and 5 it is also easy to see that point
defects have a stronger effect on the model than extended
defects. For L = 25 and 45 we found similar results.

It is instructive to consider all data corresponding to
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FIG. 7. Finite-size analysis for & = 0.2 and several defect concentrations.
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TABLE I. Critical exponents v and 3 of the model with
open boundary conditions, as a function of defect concen-
tration. P (E) denotes point (extended) defects. B, is the
“apparent” value of B (see the text).

defects (%) v(+0.1) B(+£0.1) B/v—1 B.
0 2.30 4.25 0.85 £0.12 _ 0.86
1(P) 1.13 1.90 0.60 £0.23  0.75

2 (P) 0.55 0.90 0.64 £0.48  0.67
3(P) 0.35 0.45 0.29 £0.65  0.59

5 (P) 0.35 0.45 0.29 +0.65  0.53
1(E) 1.60 3.10 0.94 £0.18  0.82

2 (E) 1.00 1.80 0.80 £0.28  0.76

3 (E) 0.60 1.10 0.83 £0.31  0.73

5 (E) 0.60 1.00 0.83 £0.31  0.66

a given percentage of defects, for instance L = 25, 35,45
and § = 5% for both types of defects (see Fig. 6). De-
fects have little effect on the smallest “avalanches”: this
gives rise to the short straight part of the graph, for S
< 10, which is analogous to the case § = 0. For larger
values of S, the curves bend and spread: we show in
the inset of Fig. 6 that the “order” of these curves is
25P,35P,45P,25E,35E,45E (25P means L = 25, point
defects, etc.). The spread is less pronounced for smaller
values of é.

We have performed a finite-size scaling analysis of the
distribution function, finding that it is very well de-
scribed by the standard expression

D(S,L) = L™PD(S/L), (3.1)
where D is a scaling function and 3 and v are critical
indices of the distribution. In other words, this result
shows that the model has true criticality (for a different
conclusion in a related work see Ref. [12]). We study
the case a = 0.2 as a function of both size and defect
concentration. Some representative examples are given
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FIG. 8. Critical exponents 8 and v as a function of defect

concentration. The lines are only a guide to the eye.

in Fig. 7. Our results are given in Table I and are dis-
played in Fig. 8. In Table I we also include a column with
the value (8/v — 1), which should be compared with B
(scaling predicting [8] that 1 + B = §/v).

In conclusion, we have shown that self-organized crit-
icality in the coupled map lattice associated with the
spring-block model of earthquakes is robust under a
rather natural perturbation of its elastic constants. Al-
though we have checked that for a perfect lattice B(«)
is a smoothly decreasing function of «, we find that the
presence of defects with ag < « results in a reduction of
B that we tentatively associate with the nonlocal char-
acter of the update rules of the automaton.

Note added: We have become aware of a very recent
and interesting work by P. Grassberger [13] where a more
efficient algorithm for simulating this (and other similar)
model in much larger lattices is introduced. The exten-
sion of the present work to these sizes could help to un-
derstand the relationship between avalanche scaling and
the sources of spatial inhomogeneities, a subject raised
in the Grassberger paper.
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